按提交时间
按主题分类
按作者
按机构
您选择的条件: Hui Li
  • The FAST Core Array

    分类: 天文学 >> 天文仪器与技术 提交时间: 2024-04-16 合作期刊: 《天文技术与仪器(英文)》

    摘要:The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) Core Array is a proposed extension of FAST, integrating 24 secondary 40-m antennas implanted within 5 km of the FAST site. This original array design will combine the unprecedented sensitivity of FAST with a high angular resolution (4.3" at a frequency of 1.4 GHz), thereby exceeding the capabilities at similar frequencies of next-generation arrays such as the Square Kilometre Array Phase 1 or the next-generation Very Large Array. This article presents the technical specifications of the FAST Core Array, evaluates its potential relatively to existing radio telescope arrays, and describes its expected scientific prospects. The proposed array will be equipped with technologically advanced backend devices, such as real-time signal processing systems. A phased array feed receiver will be mounted on FAST to improve the survey efficiency of the FAST Core Array, whose broad frequency coverage and large field of view( FOV) will be essential to study transient cosmic phenomena such as fast radio bursts and gravitational wave events, to conduct surveys and resolve structures in neutral hydrogen galaxies, to monitor or detect pulsars, and to investigate exoplanetary systems. Finally, the FAST Core Array can strengthen China's major role in the global radio astronomy community, owing to a wide range of potential scientific applications from cosmology to exoplanet science.

  • Galaxy Image Classification using Hierarchical Data Learning with Weighted Sampling and Label Smoothing

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: With the development of a series of Galaxy sky surveys in recent years, the observations increased rapidly, which makes the research of machine learning methods for galaxy image recognition a hot topic. Available automatic galaxy image recognition researches are plagued by the large differences in similarity between categories, the imbalance of data between different classes, and the discrepancy between the discrete representation of Galaxy classes and the essentially gradual changes from one morphological class to the adjacent class (DDRGC). These limitations have motivated several astronomers and machine learning experts to design projects with improved galaxy image recognition capabilities. Therefore, this paper proposes a novel learning method, ``Hierarchical Imbalanced data learning with Weighted sampling and Label smoothing" (HIWL). The HIWL consists of three key techniques respectively dealing with the above-mentioned three problems: (1) Designed a hierarchical galaxy classification model based on an efficient backbone network; (2) Utilized a weighted sampling scheme to deal with the imbalance problem; (3) Adopted a label smoothing technique to alleviate the DDRGC problem. We applied this method to galaxy photometric images from the Galaxy Zoo-The Galaxy Challenge, exploring the recognition of completely round smooth, in between smooth, cigar-shaped, edge-on and spiral. The overall classification accuracy is 96.32\%, and some superiorities of the HIWL are shown based on recall, precision, and F1-Score in comparing with some related works. In addition, we also explored the visualization of the galaxy image features and model attention to understand the foundations of the proposed scheme.

  • Hot Circumsingle Disks Drive Binary Black Hole Mergers in Active Galactic Nucleus Disks

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Binary black hole (BBH) mergers, particularly those with component masses in the pair-instability gap, may be produced by hierarchical mergers in the disks surrounding Active Galactic Nuclei (AGN). While the interaction of an embedded BBH with an AGN disk is typically assumed to facilitate a merger, recent high-resolution hydrodynamical simulations challenge this assumption. However, these simulations often have simplified treatments for the gas thermodynamics. In this work, we model the possible consequence of various feedback from an embedded BBH with a simple model that maintains an enhanced temperature profile around each binary component. We show that when the minidisks around each BH become hotter than the background by a factor of three, the BBH orbital evolution switches from expansion to contraction. By analyzing the gravitational torque profile, we find that this change in direction is driven by a weakening of the minidisk spirals and their positive torque on the binary. Our results highlight the important role of thermodynamics around BBHs and its effect on their orbital evolution, suggesting that AGN disks could be efficient factories for BBH mergers.

  • On the Interpretation of the Scalings of Density Fluctuations from In-situ Solar Wind Observations: Insights from 3D Turbulence Simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Solar wind turbulence is often perceived as weakly compressible and the density fluctuations remain poorly understood both theoretically and observationally. Compressible magnetohydrodynamic simulations provide useful insights into the nature of density fluctuations. We discuss a few important effects related to 3D simulations of turbulence and in-situ observations. The observed quantities such as the power spectrum and variance depend on the angle between the sampling trajectory and the mean magnetic field due to anisotropy of the turbulence. The anisotropy effect is stronger at smaller scales and lower plasma beta. Additionally, in-situ measurements tend to exhibit a broad range of variations, even though they could be drawn from the same population with the defined averages, so a careful averaging may be needed to reveal the scaling relations between density variations and other turbulence quantities such as turbulent Mach number from observations.

  • The essential role of multi-point measurements in investigations of turbulence, three-dimensional structure, and dynamics: the solar wind beyond single scale and the Taylor Hypothesis

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Space plasmas are three-dimensional dynamic entities. Except under very special circumstances, their structure in space and their behavior in time are not related in any simple way. Therefore, single spacecraft in situ measurements cannot unambiguously unravel the full space-time structure of the heliospheric plasmas of interest in the inner heliosphere, in the Geospace environment, or the outer heliosphere. This shortcoming leaves numerous central questions incompletely answered. Deficiencies remain in at least two important subjects, Space Weather and fundamental plasma turbulence theory, due to a lack of a more complete understanding of the space-time structure of dynamic plasmas. Only with multispacecraft measurements over suitable spans of spatial separation and temporal duration can these ambiguities be resolved. We note that these characterizations apply to turbulence across a wide range of scales, and also equally well to shocks, flux ropes, magnetic clouds, current sheets, stream interactions, etc. In the following, we will describe the basic requirements for resolving space-time structure in general, using turbulence' as both an example and a principal target or study. Several types of missions are suggested to resolve space-time structure throughout the Heliosphere.

  • Multiple gas phases in supernova remnant IC 443: mapping shocked H$_2$ with VLT/KMOS

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Supernovae and their remnants provide energetic feedback to the ambient interstellar medium (ISM), which is often distributed in multiple gas phases. Among them, warm molecular hydrogen (H$_2$) often dominates the cooling of the shocked molecular ISM, which has been observed with the H$_2$ emission lines at near-infrared wavelengths. Such studies, however, were either limited in narrow filter imaging or sparsely sampled mid-infrared spectroscopic observations with relatively poor angular resolutions. Here we present near-infrared ($H$- and $K$-band) spectroscopic mosaic observations towards the A, B, C, and G regions of the supernova remnant (SNR) IC 443, with the K-band Multi-Object Spectrograph (KMOS) onboard the Very Large Telescope (VLT). We detected 20 ro-vibrational transitions of H$_2$, one H line (Br$\gamma$), and two [Fe II] lines, which dominate broadband images at both $H$- and $K$-band. The spatial distribution of H$_2$ lines at all regions are clumpy on scales from $\sim 0.1$ pc down to $\sim 0.008$ pc. The fitted excitation temperature of H$_2$ is between 1500 K and 2500 K, indicating warm shocked gas in these regions. The multi-gas-phase comparison shows stratified shock structures in all regions, which explains the co-existence of multiple types of shocks in the same regions. Last, we verify the candidates of young stellar objects previously identified in these regions with our spectroscopic data, and find none of them are associated with young stars. This sets challenges to the previously proposed scenario of triggered star formation by SNR shocks in IC~443.

  • Nature and Scalings of Density Fluctuations of Compressible MHD Turbulence with Applications to the Solar Wind

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The solar wind is a magnetized and turbulent plasma. Its turbulence is often dominated by Alfv\'enic fluctuations and often deemed as nearly incompressible far away from the Sun, as shown by in-situ measurements near 1AU. However, for solar wind closer to the Sun, the plasma $\beta$ decreases (often lower than unity) while the turbulent Mach number $M_t$ increases (can approach unity, e.g., transonic fluctuations). These conditions could produce significantly more compressible effects, characterized by enhanced density fluctuations, as seen by several space missions. In this paper, a series of 3D MHD simulations of turbulence are carried out to understand the properties of compressible turbulence, particularly the generation of density fluctuations. We find that, over a broad range of parameter space in plasma $\beta$, cross helicity and polytropic index, the turbulent density fluctuations scale linearly as a function of $M_t$, with the scaling coefficients showing weak dependence on parameters. Furthermore, through detailed spatio-temporal analysis, we show that the density fluctuations are dominated by low-frequency nonlinear structures, rather than compressible MHD eigen-waves. These results could be important for understanding how compressible turbulence contributes to solar wind heating near the Sun.

  • Galaxy Image Classification using Hierarchical Data Learning with Weighted Sampling and Label Smoothing

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: With the development of a series of Galaxy sky surveys in recent years, the observations increased rapidly, which makes the research of machine learning methods for galaxy image recognition a hot topic. Available automatic galaxy image recognition researches are plagued by the large differences in similarity between categories, the imbalance of data between different classes, and the discrepancy between the discrete representation of Galaxy classes and the essentially gradual changes from one morphological class to the adjacent class (DDRGC). These limitations have motivated several astronomers and machine learning experts to design projects with improved galaxy image recognition capabilities. Therefore, this paper proposes a novel learning method, ``Hierarchical Imbalanced data learning with Weighted sampling and Label smoothing" (HIWL). The HIWL consists of three key techniques respectively dealing with the above-mentioned three problems: (1) Designed a hierarchical galaxy classification model based on an efficient backbone network; (2) Utilized a weighted sampling scheme to deal with the imbalance problem; (3) Adopted a label smoothing technique to alleviate the DDRGC problem. We applied this method to galaxy photometric images from the Galaxy Zoo-The Galaxy Challenge, exploring the recognition of completely round smooth, in between smooth, cigar-shaped, edge-on and spiral. The overall classification accuracy is 96.32\%, and some superiorities of the HIWL are shown based on recall, precision, and F1-Score in comparing with some related works. In addition, we also explored the visualization of the galaxy image features and model attention to understand the foundations of the proposed scheme.

  • Spectral evolution of an eruptive polar crown prominence with IRIS observations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Prominence eruption is closely related to coronal mass ejections and is an important topic in solar physics. Spectroscopic observation is an effective way to explore the plasma properties, but the spectral observations of eruptive prominences are rare. In this paper we will introduce an eruptive polar crown prominence with spectral observations from the Interface Region Imaging Spectrograph (IRIS), and try to explain some phenomena that are rarely reported in previous works. The eruptive prominence experiences a slow-rise and fast-rise phase, while the line-of-sight motions of the prominence plasma could be divided into three periods: two hours before the fast-rise phase, opposite Doppler shifts are found at the two sides of the prominence axis;then, red shifts dominate the prominence gradually; in the fast-rise phase, the prominence gets to be blue-shifted. During the second period, a faint component appears in Mg II k window with a narrow line width and a large red shift. A faint region is also found in AIA 304-angstrom images along the prominence spine, and the faint region gets darker during the expansion of the spine. We propose that the opposite Doppler shifts in the first period are a feature of the polar crown prominence that we studied. The red shifts in the second period are possibly due to mass drainage during the elevation of the prominence spine, which could accelerate the eruption in return. The blue shifts in the third period are due to that the prominence erupts toward the observer. We suggest that the faint component appears due to the decreasing of the plasma density, and the latter results from the expansion of the prominence spine.

  • High-Resolution Observations of Prominence Plume Formation with the New Vacuum Solar Telescope

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Prominence plumes are evacuated upflows that emerge from bubbles below prominences, whose formation mechanism is still unclear. Here we present a detailed study of plumes in a quiescent prominence using the high-resolution H-alpha filtergrams at the line center as well as line wing at +/-0.4 angstrom from the New Vacuum Solar Telescope. Enhancements of brightening, blue shifts, and turbulence at the fronts of plumes are found during their formation. Some large plumes split at their heads and finger-shaped structures are formed between them. Blue-shifted flows along the bubble-prominence interface are found before and during the plume formation. Our observations are consistent with the hypothesis that prominence plumes are related to coupled Kelvin-Helmholtz and Rayleigh-Taylor (KH/RT) instabilities. Plume splittings and fingers are evidence of RT instability, and the flows may increase the growth rate of KH/RT instabilities. However, the significant turbulence at plume fronts may suggest that the RT instability is triggered by the plumes penetrating into the prominence. In this scenario, extra mechanisms are necessary to drive the plumes.

  • On the injection scale of the turbulence in the partially ionized very local interstellar medium

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The cascade of magnetohydrodynamic (MHD) turbulence is subject to ion-neutral collisional damping and neutral viscous damping in the partially ionized interstellar medium. By examining the damping effects in the warm and partially ionized local interstellar medium, we find that the interstellar turbulence is damped by neutral viscosity at $\sim 261$ au and cannot account for the turbulent magnetic fluctuations detected by Voyager 1 and 2. The MHD turbulence measured by Voyager in the very local interstellar medium (VLISM) should be locally injected in the regime where ions are decoupled from neutrals for its cascade to survive the damping effects. With the imposed ion-neutral decoupling condition, and the strong turbulence condition for the observed Kolmogorov magnetic energy spectrum, we find that the turbulence in the VLISM is sub-Alfv\'{e}nic, and its largest possible injection scale is $\sim 194$ au.

  • Structure and stability of high-redshift galaxies in cosmological simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We investigate the structure of galaxies formed in a suite of high-resolution cosmological simulations. Consistent with observations of high-redshift galaxies, our simulated galaxies show irregular, prolate shapes, which are dominated by turbulent motions instead of rotation. Yet molecular gas and young stars are restricted to a relatively thin plane. We examine the accuracy of applying the Toomre linear stability analysis to predict the location and amount of gas available for star formation. We find that the Toomre criterion still works for these irregular galaxies, after correcting for multiple gas and stellar components: the $Q$ parameter in $\rm{H_2}$ rich regions is in the range $0.5-1$, remarkably close to unity. Due to the violent stellar feedback from supernovae and strong turbulent motions, young stars and molecular gas are not always spatially associated. Neither the $Q$ map nor the $\rm{H_2}$ surface density map coincide with recent star formation exactly. We argue that the Toomre criterion is a better indicator of future star formation than a single $\rm{H_2}$ surface density threshold because of the smaller dynamic range of $Q$. The depletion time of molecular gas is below 1~Gyr on kpc scale, but with large scatter. Centering the aperture on density peaks of gas/young stars systematically biases the depletion time to larger/smaller values and increases the scatter.

  • Contracting and Expanding Binary Black Holes in 3D Low-Mass AGN Disks: The Importance of Separation

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: LIGO/Virgo has detected several binary black hole (BBH) merger events that may have originated in the accretion disks of Active Galactic Nuclei (AGN). These events require individual black hole masses that fall within the pair instability supernova mass gap, and therefore these black holes may have been grown from hierarchical mergers. AGN disks are a prime environment for hierarchical mergers, and thus a potential location for the progenitors of BBH gravitational wave events. Understanding how a BBH embedded in an AGN disk interacts with the surrounding environment is thus crucial for determining if this interaction can lead to its merger. However, there are few high fidelity simulations of this process, and almost all are two-dimensional. We present the results from 3D, high-resolution, local shearing-box simulations of an embedded BBH interacting with an AGN disk. In these first simulations of their kind, we focus on determining the mass accretion rate and the orbital evolution rate at different BBH separations. We find that circular, equal-mass BBHs with separations greater than 10% of their Hill radius contract while accreting at a super-Eddington rate. At smaller separations, however, our 3D simulations find that BBHs expand their orbits. This result suggests that it may be difficult for an AGN disk to push a BBH to merger, but we discuss several mechanisms, including MHD turbulence and radiative and mechanical feedback, that could alleviate this difficulty.

  • On the Existence of Fast Modes in Compressible Magnetohydrodynamic Turbulence

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We study the existence and property of Fast magnetosonic modes in 3D compressible MHD turbulence by carrying out a number of simulations with compressible and incompressible driving conditions. We use two approaches to determine the presence of Fast modes: mode decomposition based on spatial variations only and spatio-temporal 4D-FFT analysis of all fluctuations. The latter method enables us to quantify fluctuations that satisfy the dispersion relation of Fast modes with finite frequency. Overall, we find that the fraction of Fast modes identified via spatio-temporal 4D FFT approach in total fluctuation power is either tiny with nearly incompressible driving or ~2% with highly compressible driving. We discuss the implications of our results for understanding the compressible fluctuations in space and astrophysics plasmas.

  • The Lyman-$\alpha$ Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The hydrogen Lyman-$\alpha$ (H {\sc i} Ly$\alpha$) emission during solar flares has rarely been studied in spatially resolved images and its physical origin has not been fully understood. In this paper, we present novel Ly$\alpha$ images for a C1.4 solar flare (SOL2021-08-20T22:00) from the Extreme Ultraviolet Imager aboard Solar Orbiter, together with multi-waveband and multi-perspective observations from the Solar Terrestrial Relations Observatory Ahead and the Solar Dynamics Observatory spacecraft. It is found that the Ly$\alpha$ emission has a good temporal correlation with the thermal emissions at 1--8 \AA\ and 5--7 keV, indicating that the flaring Ly$\alpha$ is mainly produced by a thermal process in this small event. However, nonthermal electrons play a minor role in generating Ly$\alpha$ at flare ribbons during the rise phase of the flare, as revealed by the hard X-ray imaging and spectral fitting. Besides originating from flare ribbons, the Ly$\alpha$ emission can come from flare loops, likely caused by plasma heating and also cooling that happen in different flare phases. It is also found that the Ly$\alpha$ emission shows fairly similar features with the He {\sc ii} 304 \AA\ emission in light curve and spatio-temporal variation along with small differences. These observational results improve our understanding of the Ly$\alpha$ emission in solar flares and also provide some insights for investigating the Ly$\alpha$ emission in stellar flares.

  • Multi-species Ion Acceleration in 3D Magnetic Reconnection

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetic reconnection drives explosive particle acceleration in a wide range of space and astrophysical applications. The energized particles often include multiple species (electrons, protons, heavy ions), but the underlying acceleration mechanism is poorly understood. In-situ observations of these minority heavy ions offer a more stringent test of acceleration mechanisms, but the multi-scale nature of reconnection hinders studies on heavy-ion acceleration. Here we employ hybrid simulations (fluid electron, kinetic ions) to capture 3D reconnection over an unprecedented range of scales. For the first time, our simulations demonstrate nonthermal acceleration of all available ion species into power-law spectra. The reconnection layers consist of fragmented kinking flux ropes as part of the reconnection-driven turbulence, which produces field-line chaos critical for accelerating all species. The upstream ion velocities influence the first Fermi reflection for injection. Then lower charge/mass species initiate Fermi acceleration at later times as they interact with growing flux ropes. The resulting spectra have similar power-law indices $(p\sim4.5)$, but different maximum energy/nucleon $\propto($charge/mass$)^\alpha$, with $\alpha\sim0.6$ for low plasma $\beta$, and with $p$ and $\alpha$ increasing as $\beta$ approaches unity. These findings are consistent with observations at heliospheric current sheets and the magnetotail, and provide strong evidence suggesting Fermi acceleration as the dominant ion-acceleration mechanism.

  • Magnetic Energy Release, Plasma Dynamics, and Particle Acceleration during Relativistic Turbulent Magnetic Reconnection

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In strongly magnetized astrophysical plasma systems, magnetic reconnection is believed to be a primary process during which explosive energy release and particle acceleration occur, leading to significant high-energy emission. Past years have witnessed active development of kinetic modeling of relativistic magnetic reconnection, supporting this magnetically dominated scenario. A much less explored issue is the consequence of 3D dynamics, where turbulent structures are naturally generated as various types of instabilities develop. This paper presents a series of 3D, fully-kinetic simulations of relativistic turbulent magnetic reconnection (RTMR) in positron-electron plasmas with system domains much larger than kinetic scales. Our simulations start from a force-free current sheet with several different modes of long wavelength magnetic field perturbations, which drive additional turbulence in the reconnection region. Because of this, the current layer breaks up and the reconnection region quickly evolves into a turbulent layer filled with coherent structures such as flux ropes and current sheets. We find that plasma dynamics in RTMR is vastly different from their 2D counterparts in many aspects. The flux ropes evolve rapidly after their generation, and can be completely disrupted due to the secondary kink instability. This turbulent evolution leads to superdiffusion behavior of magnetic field lines as seen in MHD studies of turbulent reconnection. Meanwhile, nonthermal particle acceleration and energy-release time scale can be very fast and do not strongly depend on the turbulence amplitude. The main acceleration mechanism is a Fermi-like acceleration process supported by the motional electric field, whereas the non-ideal electric field acceleration plays a subdominant role. We discuss possible observational implications of 3D RTMR in high-energy astrophysics.

  • Multiple gas phases in supernova remnant IC 443: mapping shocked H$_2$ with VLT/KMOS

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Supernovae and their remnants provide energetic feedback to the ambient interstellar medium (ISM), which is often distributed in multiple gas phases. Among them, warm molecular hydrogen (H$_2$) often dominates the cooling of the shocked molecular ISM, which has been observed with the H$_2$ emission lines at near-infrared wavelengths. Such studies, however, were either limited in narrow filter imaging or sparsely sampled mid-infrared spectroscopic observations with relatively poor angular resolutions. Here we present near-infrared ($H$- and $K$-band) spectroscopic mosaic observations towards the A, B, C, and G regions of the supernova remnant (SNR) IC 443, with the K-band Multi-Object Spectrograph (KMOS) onboard the Very Large Telescope (VLT). We detected 20 ro-vibrational transitions of H$_2$, one H line (Br$\gamma$), and two [Fe II] lines, which dominate broadband images at both $H$- and $K$-band. The spatial distribution of H$_2$ lines at all regions are clumpy on scales from $\sim 0.1$ pc down to $\sim 0.008$ pc. The fitted excitation temperature of H$_2$ is between 1500 K and 2500 K, indicating warm shocked gas in these regions. The multi-gas-phase comparison shows stratified shock structures in all regions, which explains the co-existence of multiple types of shocks in the same regions. Last, we verify the candidates of young stellar objects previously identified in these regions with our spectroscopic data, and find none of them are associated with young stars. This sets challenges to the previously proposed scenario of triggered star formation by SNR shocks in IC~443.

  • Chromospheric recurrent jets in a sunspot group and their inter-granular origin

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report on high resolution observations of recurrent fan-like jets by the Goode Solar telescope (GST) in multi-wavelengths inside a sunspot group. The dynamics behaviour of the jets is derived from the Ha line profiles. Quantitative values for one well-identified event have been obtained showing a maximum projected velocity of 42 km s^-1 and a Doppler shift of the order of 20 km s^-1. The footpoints/roots of the jets have a lifted center on the Ha line profile compared to the quiet sun suggesting a long lasting heating at these locations. The magnetic field between the small sunspots in the group shows a very high resolution pattern with parasitic polarities along the inter-granular lanes accompanied by high velocity converging flows (4 km s^-1) in the photosphere. Magnetic cancellations between the opposite polarities are observed in the vicinity of the footpoints of the jets. Along the inter-granular lanes horizontal magnetic field around 1000 Gauss is generated impulsively. Overall, all the kinetic features at the different layers through photosphere and chromosphere favor a convection-driven reconnection scenario for the recurrent fan-like jets, and evidence a site of reconnection between the photosphere and chromosphere corresponding to the inter-granular lanes.

  • Formation and evolution of young massive clusters in galaxy mergers: the SMUGGLE view

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Galaxy mergers are known to host abundant young massive cluster (YMC) populations, whose formation mechanism is still not well-understood. Here, we present a high-resolution galaxy merger simulation with explicit star formation and stellar feedback prescriptions to investigate how mergers affect the properties of the interstellar medium and YMCs. Compared with a controlled simulation of an isolated galaxy, the mass fraction of dense and high-pressure gas is much higher in mergers. Consequently, the mass function of both molecular clouds and YMCs becomes shallower and extends to higher masses. Moreover, cluster formation efficiency is significantly enhanced and correlates positively with the star formation rate surface density and gas pressure. We track the orbits of YMCs and investigate the time evolution of tidal fields during the course of the merger. At an early stage of the merger, the tidal field strength correlates positively with YMC mass, $\lambda_{\rm tid}\propto M^{0.71}$, which systematically affects the shape of the mass function and age distribution of the YMCs. At later times, most YMCs closely follow the orbits of their host galaxies, gradually sinking into the center of the merger remnant due to dynamical friction, and are quickly dissolved via efficient tidal disruption. Interestingly, YMCs formed during the first passage, mostly in tidal tails and bridges, are distributed over a wide range of galactocentric radii, greatly increasing their survivability because of the much weaker tidal field in the outskirts of the merger system. These YMCs are promising candidates for globular clusters that survive to the present day.